MATH 2460 EXAM 1

NAME

Answer the following questions correctly for a full credit. **NO DECIMAL**.

1. (2pts) Find the volume of the solid formed by revolving the graph of $y = \sqrt{4 - x^2}$ about the x-axis. (Show your work clearly)

2. (1pt) <u>Choose ONE</u> of the following questions:(Either (a) OR (b) and clearly <u>show</u> your work!)

(a) Evaluate
$$\frac{d}{dx} \int_{x^2}^3 \sin(t^2) dt$$

(b) Find $F'(x)$ when $F(x) = \int_x^{x^2+4} \tan^2(t) dt$

3. (**2pts**) <u>**Choose ONE**</u> of the following questions:(Either (a) OR (b) and clearly <u>show</u> your work)

Consider the region R_1 which is bounded by the curve $y = \sqrt{x}$ and the lines x = 2 and y = 0 to answer the following either question (2pts).

(a) Use the disk/washer method to set up the integral that gives the volume of the solid formed by revolving the region R_1 about:

i. x-axis ii. y-axis iii. line x = 2 iv. line x = 4

(b) Use the shell method to set up the integral that gives the volume of the solid formed by revolving the region R_1 about:

i. x-axis ii. y-axis iii. line x = 2 iv. line x = 4

4. (1pt) Find the area of the region bounded by $y = \sin x$ and $y = \cos x$ from $x = \pi/4$ to $x = 5\pi/4$.

- 5. (2pts) Find the volume of the solid generated by rotating the region bounded by $y = x^2 + 1$, y = 0, x = 0, x = 1 about the *y*-axis using:
 - (a) the disk/washer (b) shell method. Which one is preferable?

6. (1pt) Evaluate
$$\int_{1}^{2} \frac{1}{x} dx$$

7. (1pt) Find the indefinite integral
$$\int 2x \cos(x^2) dx$$

- 8. (3pts) Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for n = 2. Round your answers to *four decimal places* and compare the results with the exact value of the definite integral. $\int_0^2 \sqrt{x} \, dx$ (show your work!)
 - (a) Trapezoidal Rule

(b) Simpson's Rule

(c) Exact value

9. (1pt) Find the general solution of the differential equation and check the result by differentiation. (Use C for the constant of integration.) $\frac{dr}{d\theta} = 2\pi$.

10. (1pt) Solve the differential equation. $f'(x) = x^2 + 3$, f(1) = 0